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A probabilistic theory for the strength of 
short fibre composites 
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This paper presents a probabilistic theory for predicting the strength of unidirectional 
short fibre composites. It is assumed that the failure of the composite occurs due to the 
inability of the short fibres bridging a critical zone to carry the load. The stress concen- 
trations on the fibres bridging a fibre end gap are evaluated as a function of the number 
of fibre ends forming the gap. The sizes of the gaps are predicted from a probabilistic 
approach. The short fibre composite strength is then estimated from the gap size and the 
corresponding stress concentration factor. Comparisons of the present work with existing 
theories and experiments have been made. 

1. I n t r o d u c t i o n  
Composite materials reinforced with discontinuous 
fibres have versatile properties and are relatively 
inexpensive to fabricate. The fibres are relatively 
short, variable in length and imperfectly aligned. 
Fibres including glass, graphite, Kevlar and asbestos 
have been used to reinforce polymeric matrices. As 
discussed by Chou and Kelly [1, 2],  the strength 
and failure behaviour of short fibre composites are 
complicated by the non-uniformity in fibre length 
and orientation as well as by the interaction 
between the fibres and matrix at the fibre ends. 

Several theories have been proposed to predict 
the strength of short fibre composites. One theory 
is based upon a modification of the "rule of 
mixtures" originally developed for continuous 
fibre composites. For unidirectional continuous 
fibre composites, under the assumption of iso- 
strain in the fibres and matrix, the rule of mixtures 
assumes the following form [3] 

o~u = a~uv~ + am(1 - v 0 ,  (1) 

where Oeu and a m are the ultimate tensile strength 
of the composite and fibre, respectively, am is the 
matrix stress at the ultimate tensile strain of the 
fibres and Vf denotes fibre volume fraction. 

In the case of short fibre composites, Equation 
1 is modified as follows [3] 

ar = a~uV, Fqo/t) + O'm(1 - VO, (2) 

where l e and l denote critical and actual fibre 
length, respectively. The factor, F(lell)  which 
takes into account the effect of fibre length, is 
less than unity and 

F(le/l  ) = 1 - - ( l e l 2 l )  (3) 

for the case of constant interfacial shear stress. 
It is an established fact that even in continuous 

fibre composites, failure can initiate when a micro- 
crack forms at the weakest point of a fibre. The 
works of Zweben [4], Fukuda and Kawata [5, 6] 
and Oh [7] have demonstrated this fact. The 
problem of discontinuous fibre composites is, 
however, complicated by the presence of fibre 
ends and the resulting stress concentration. Riley 
[8], taking into consideration the stress concen- 
tration due to fibre discontinuity, obtained the 
following expression for composite strength 

6/7 
afVf + ore(1 -- Vf). (4) 

oe - 1 + (5lc/71) 

Although his approach is an oversimplified one, 
the basic idea of load transfer seems to be impor- 
tant. 

A systematic experimental study of short fibre 
composite strength was performed by Curtis, 
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Figure I A typical critical zone in a short fibre composite 
(after [ 1 0 ] ). 

Bader and Bailey [9] using polyamide thermo- 
plastic reinforced with short glass and graphite 
fibres. These findings of Curtis, Bader and Bailey [9] 
led Bader, Chou and Quigley [10] to propose a 
damage model. The basic concepts are that micro- 
cracks are most likely to develop at fibre ends at 
microscopic strains well below the fibre failure 
strain, and that failure is finally initiated in a 
critical cross-section that has been weakened by 
the accumulation of cracks. 

Fig. 1 depicts a typical volume element in a 
short fibre composite used by Bader, Chou and 
Quigley [10]. The width of a "critical zone" in 
the strength model is denoted by /31 where /3 is 
a constant parameter and 1 is the average fibre 
length. The number of fibre ends within the 
critical zone, and the number of fibres bridging 
the zone are functions of the critical zone width. 
The strength of the composite is determined by 
the relative numbers of  fibres that bridge the zone 
versus those with ends within the zone. These 
latter will develop matrix cracks when the strain 
exceeds a critical value. The critical situation 
arises when the bridging fibres are unable to sus- 

rain the load transfer due to matrix cracking and 
failure occurs. The critical stress and strain values 
for a wide range of fibre aspect ratio, fibre critical 
length, f ibre-matrix interfacial strength and 
critical zone width have been evaluated by Bader, 
Chou and Quigley [10]. 

In this paper, a probabilistic approach is 
adopted to examine the strength of unidirectional 
short fibre composites. The probability of finding 
a number of fibre ends clustered together forming 
a "fibre end gap" is derived as a function of gap 
size. The stress concentrations on fibres bridging 
a fibre end gap are taken into account in deriving 
the strength of the composite. It should be noted 
that this strength theory based upon the prob- 
abilistic approach gives the average strength 
obtainable from a large number of test specimens. 

2. Theory 
2.1. Modi f icat ions of  the rule of  mix tures  
A unidirectional short fibre composite material 
where the fibres are of  uniform length and 
strength is considered. The mechanisms of failure 
can be categorized :,~cording to fibre length 
(Fig. 2). When fibres are very short, a crack 
formed at a fibre end can circumvent the neigh- 
bouring fibres without breaking them (Fig. 2a). 
Final failure of the composite is then attributed 
to fibre pull-out. On the other hand, if fibres 
are sufficiently long, fibre end cracks will cause 
fracture of the neighbouring fibres and hence, 
failure of the composite (Fig. 2b). A strength 
model based upon the latter case is described in 
this paper. 

The composite ultimate strength aeu is defined 
as the stress level which causes first fibre fracture. 
Consequently, the maximum stress in a fibre is 
of primary importance in predicting composite 
strength. Fig. 3 schematically shows stress distri- 
butions in a short fibre. Here, Om~, , and Oo are 
the maximum and plateau stresses of the profile. 
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Figure 2 Two failure modes in short fibre composites. 
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l~gure 3 Stress distribution in a short fibre. 

The average fibre stress at failure is given by 

= 7 o(x),ix. (s) 

In the case where the composite has a distribution 
of fibre lengths, Equation 5 sl~ould be replaced by 

0:  J; f(l)(l~: o(x, dx) d,, (6, 

where f ( l )  is a probability density function of 
fibre lengthand has the following characteristics: 

)of(l)dl = 1; (7) 

fof(Otdt = f ;  (8) 

[ in Equation 8 denotes the average fibre length. 
Then the rule of mixtures can be expressed as 

aeu = 6Vf + o ' ( 1  -- Vf). (9) 

Equation 9 is a modified form of Equation 2. The 
values of 6 and Oo are not the same. However, the 
difference diminishes as the fibre length increases. 
For relatively large fibre aspect ratio it can be 
assumed that 6 ~  ao. Furthermore, by defining 
the stress concentration factor K as 

O m a x  ----- O f u  = Koo 

Equation 9 can be written as 

aeu Vf + am(1 -- V~). (10) a e u -  K 

Consequently, the problem of short fibre compo- 
site strength is now reduced to the prediction of 
maximum stress concentration factor in the 
specimen. 

2.2. Stress c o n c e n t r a t i o n  f ac to r  
The stress concentration factor for the unidirec- 
tional fibre arrangement of Fig. 3 is difficult to 
evaluate in a precise manner. The following 
assumptions are adopted to facilitate the calcu- 
lation of K: (a) fibres are of the same length, l, 
(b) they are arranged in rows along the axial 
direction, (c) the spacing between two neigh- 
bouring rows is uniform and is denoted by h 
(Fig. 4a) and (d) fibres with ends in the critical 
zone of width /31 are assumed to have the ends 
aligned along the cross-section zz' (Fig. 4b). 

It is assumed that the fibre length l is much larger 
than the critical length le and hence, results for 
long fibres can be used. Following the terms used 
by Bader et al. [10], in Fig. 4a Fibres 1 and 4 are 
named "bridging fibres" and Fibres 2 and 3 as 
"ending fibres." If there are many bridging fibres 
surrounding the ending fibres as shown in Fig, 5a 
the stress concentration at point A can be calcu- 
lated using the results of Hedgepeth [11] for 
two-dimensional problems, and Hedgepeth and 
Van Dyke [12] for three-dimensional problems. 
If the probability of finding fibre ends is high, 
the situation can be more closely simulated by 
that in Fig. 5b. In this case, a treatment similar 
to that used by Fukuda and Kawata [13] should 
be used. It is understood that although in actual 
composites the short fibre arrangements are quite 
random, Fig. 5a and b represent the typical cases 
in local stress magnification. The clustering of 
fibre ends as shown in Fig. 4b are called a "fibre 
end gap". 

2.3. Probabilistic approach 
The objective of this section is to determine the 
probability of finding fibre end gaps in a uni- 
directional system as a function of the number 
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Figure 4 Model for calculating K. 
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Figure 5 Examples of arrays of bridging fibres and ending fibres. 

of fibre ends in the gap. The number of fibre 
ends in a gap appearing on a plane transverse to 
the fibre direction determines the stress concen- 
tration on the bridging fibres immediately sur. 
rounding the gap. In the following, a model for 
two-dimensional fibre arrays is first discussed 
and the probability functions are derived. The 
model is then extended to the case of three- 
dimensional fibre arrays. 

Fig. 6 schematically shows the development 
of the probability function for a two-dimensional 
fibre arrangement. In order to simplify the dis- 

cussion, firstly the probability function for a 
half region is demonstrated in Fig. 6. Fig. 6 
depicts a gap between two short fibres aligned 
in the axial direction. The probability of finding 
an adjacent bridging fibre (denoted by i = 1 in 
Fig. 6b) is given by 

P1 ~" 1--/3. (11) 

Then the probability of  Fibre t being an ending 
fibre (Fig. 6c) is denoted by 

/~1 = l - - P 1 .  (12) 
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Figure 6 Probability model for finding fibre end gaps, half space. 
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Figure 7 Probability model for finding fibre end gaps, total space. 

Then the probability is derived of finding a gap The residual part 
containing any arbitrary number of fibre ends 
aligned along a plane transverse to the fibre 
direction. Fig. 6d shows two adjacent fibre end 
gaps next to a bridging fibre (i = 2). The prob- 
ability of finding this configuration is 

P2 --- /51(1--~). (13) 

The probability that Fibre 2 also has a gap (Fig. 
6e) is denoted by /52 and it can be found by 
observing that 

/)2 + / 5  = /51. (14) 

Consequently, 

/52 = /51--/~ (15) 

An identical reasoning can be applied to Fig. 7. 
Starting from one gap (Fig. 7a), the probability 
that both surrounding fibres are bridging fibres 
(Fig. 7b) is 

P1 = (1 - -3 )  2. (16) 

/51 = l - - P 1  (17) 

indicates that at least one adjacent fibre is ending 
(Fig. 7c). Fig. 7c shows the probabilities given by 
both Fig. 7d and 7e. Then the probability that 
the situation of Fig. 7d appears is 

P2 = t~1( 1 __j~)2 (18) 

and the residual 

if2 = /51--P: (19) 

indicates the situation of Fig. 7e. Finally, it can 
be deduced that the probability of finding a gap 
which consists of n ending fibres aligned along a 
transverse plane and enclosed on both sides by 
two bridging fibres (Fig. 8) is 

P ,  = P,-I(1 -- 3) 2 (20) 

and the residual part is 

/5, =/5,,-1-e,,. (21) 
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l~gure 8 A fibre end gap consisting of n fibre ends. 

From Equations 20 and 21 

Pn = e~en-, = . . -  = /5~ ( 2 2 )  

and therefore, Equation 20 can be written as 

p , ,  = /~I,-1(1 _/~)2. (23) 

It is easily shown from Equation 23 that the 
following relation holds 

en = ] .  (24) 
n - 1  

It should be noted that in Fig. 7 the derivation 
begins by focussing our attention on a fibre end 
gap. It can be readily shown that the end result 
(Equation 23) is unchanged by focussing on a 
bridging fibre to begin with. 

f i b re  end 
/ ~  bridging 

0 f ib res  

0 

0 0 

(G) 

In the case of three-dimensional fibre arrays, 
the problem becomes more complex for the 
following reasons. First, the number of bridging 
fibres surrounding a fibre gap is not constant in 
the three-dimensional case whereas the number 
is always two in two-dimensional models. Fig. 9 
schematically shows the cross-sectional view of 
bridging fibres surrounding a fibre gap based upon 
a hexagonal array. The number of bridging fibres 
is six for a gap with one ending fibre and eight 
for two ending fibres (Fig. 9a and b). However, 
the number of bridging fibres is either nine or ten 
for a gap with three ending fibres (Fig. 9c). The 
second complicating factor is that the stress con- 
centrations of the bridging fibres are not the same. 
This can be seen, for example, in Fig. 9b for fibres 
denoted by A, B and C. 

To circumvent the complexity in three- 
dimensional fibre arrays the following assumptions 
are adopted for simplifying the problem: 

(1) The number of fibres bridging a fibre gap 
with n ending fibres is taken as small as possible. 
In other words, the ending fibres in a fibre gap 
are assumed to be packed as compactly as possible. 

(2) Bridging fibres surrounding a given fibre 
gap all have the same stress concentration factor. 

These assumptions are used as a first approxi- 
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Figure 9 Fibre end gaps in hexagonal arrays. 
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marion. Following the discussion given for the two- 
dimensional fibre array model, for the three- 
dimensional case, 

P1 = ( 1 - - 9 )  6 , /5x = l - - P 1  

-P= = if1(1 - -9)  8 
(25) 

/52 - -  P i l l - - ( 1 - - / 3 )  s] = /~1--P9 

Pn = /5n-1( 1 --/3) m, , / 5  = /5n-1--P,  

are obtained where m is the number of ending 
fibres surrounding a fibre gap of n ending fibres. 

The number of  short fibres. N, in a specimen 
of volume, V, is 

4V.V~ 
N - - - ,  (26) 

7r d21 
where d and l are fibre diameter and length, 
respectively, and V, is fibre volume fraction. 

From the definition of Pn the quantity NP n 
gives the number of  fibres the end of which 
belong to a gap of n ending fibres. Therefore, 
the number of gaps of  n ending fibres is NPn/n. 
If  NPk/k is greater than 1, it means that such a 
gap .of k ending fibres occurs frequently in the 
model. Let the maximum value of k which saris- 
ties the condition NPk/k > 1 be denoted by ko. 
It can be expected that there is at least one group 
of ko neighbouring fibres forming a fibre gap in 
the specimen. Furthermore, there is no need to 
consider the gaps with less than ko fibre ends, 
since the stress concentration would be smaller 
and hence, less critical in fracture initiation. 

By taking into account the probabilities of 
finding fibre gaps with the number of adjacent 
ending fibres k greater than or equal to ko, Equ- 
ation 10 can be rewritten as follows 

Ocu = qfugf + / (  ] 
k3=ko 1 i 1( 

+ 1 - -  ~. + o ' ( 1 - - V ,  . 
Kko j=k0+l 

It is understood that oe in Equation 27 is the 
average strength of many test specimens. 

2.4.  Numer ica l  results 
Numerical calculations of short fibre composite 
strength based upon the above theory have been 
carried out. The result of Hedgepeth [11] is 
adopted for the stress redistribution near fibre 
discontinuities of  unidirectionally arrayed two- 
dimensional model. According to Hedgepeth [11] 
for a two-dimensional and unidirectional fibre 

T A B L E I Hexagonal array stress concentration factors 
[121 

Number of discontinuous 
fibres, r 

Maximum stress 
concentration factor 

1 1104 
7 1410 

19 1630 
37 1874 

array, the stress concentration factor of a fibre 
adjacent to r discontinuous fibres is given by 

4 6 {2r + 2 t 
K r = -~ x ~ - . . .  x ~ 2 - ~ ] "  (28) 

This expression is used in Equation 27. In the case 
of the three-dimensional model, Hedgepeth and 
Van Dyke [12] obtained the stress concentration 
factor for symmetrical arrangement of discon- 
tinuous fibres. Their results for the hexagonal 
array models are given in Table I. As shown in 
Fig. 9, our models are not necessarily symmetrical 
with respect to fibre ends. However, the values 
of  Table I were adopted as a first approximation. 
Linear interpolation was used to estimate the 
stress concentration factor for an intermediate 
number of discontinuous fibres, that is, r =  2, 
3 . . .  6 , 8 , 9  . . .  18,20,21 . . . .  

Equation 27 was rearranged as follows 

? r 
oeJOra = O~u/Om VgF + (1 -- V0, (29) 

where F can be easily deduced from Equation 27. 
The factor F is calculated by assuming lc = 
0.1ram, d = 0 . 0 1 m m  and V = 4 0 0 m m  3. Fig. 10 
shows the relation between F and the fibre length, 
l, for both two- and three-dimensional analysis. 
It should be noted that F decreases slightly with 
increasing V~. In the case of  three-dimensional 
fibre array the value of F in the series expression 
(Equation 27) converges very slowly at very small 
fibre length. This is attributed to the fact that the 
extremely short fibre length range is not suitable 
for the present theory. Hence a broken line is 
drawn in Fig. 10 for the range of fibre lengths 
between 0.5 and 1 mm. Both Equations 2 (rule of 
mixtures) and 4 (Riley's solution) can be rewritten 
as Equation 29 and these values of F are also 
shown in Fig. 10. Taking into consideration 
the effect of fibre end gaps, our results predict a 
smaller F value than those of the rule of mixtures 
and Riley's solution. 

Although we do not have the experimental 
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value of  afu/Om, it is equivalent to El~Era if both  
fibre and matrix are assumed to be linearly elastic. 
In Fig. 11 the relation of  composite strength 
against volume fraction of  fibre at Ef/E m = 

35.2 [14] and l = 0.5 mm is shown. Our theory 
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Figure 11 Strength of short fibre composites as a function 
of Vf with /-= 0.5 ram, (1) rule of mixtures, (2) Riley's 
solution [8], (3) and (4) present analysis, (3) three- 
dimensional, (4) two-dimensional, (5) and (6) modified 
value at C= 0.59, (5) three-dimensional, (6) two- 
dimensional. - - . - -  rule of mixtures for l = ~, �9 experi- 
mental data, LGN [9]. 

Figure 10 Reinforcement factor F against 
fibre length. (1) rule of mixtures, (2) Riley's 
solution, (3) and (4)present analysis, (3) 
three-dimensional array, (4) two-dimensional 
array. 

CO 

is based on the assumption of  unidirectional fibre 
array. In actual injection-moulded composite ma- 
terials, fibres are not perfectly aligned. If  the orien- 
tation factor C = 0.59 [14] is multiplied to the first 
term of  Equation 29, the broken linesin Fig. 11 can 
be obtained. The experimental data [9] are rep- 
resented by �9 in Fig. 11. The fibre length o f  0.5 mm 
used in the experimental work of  Curtis et al. [9] 
is too short for the present theory to be applied in 
a satisfactory manner. Better agreement can be ob- 
tained for larger fibre aspect ratios and with more 
information on fibre orientation distribution. 

3.  D i s c u s s i o n s  a n d  c o n c l u s i o n s  
(1) The present theory adopted the concept of  a 
"critical zone" in the failure of  short fibre com- 
posites. The stress redistribution in the critical 
zone due to stress concentrations has been exa- 
mined. 

(2) The stress concentrations at the ends of  
short fibres are evaluated by considering the size 
o f  a fibre end gap as a function of  the number 
of  fibre ends forming the gap. 

(3) The occurrence of  fibre end gaps of  dif- 
ferent sizes is predicted based upon a probabilistic 
approach. Unidirectional short fibre composites 
can be calculated from the gap size and corre- 
sponding stress concentration factor. 

(4) Quantitative comparisons o f  the theory 
with experiment is difficult at the present time 
particularly because o f  the tack o f  information 
on fibre length and orientation distributions, as 
well as fibre critical length in actual short fibre 
composite systems. 
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